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COMMENT 
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Abstract. In this comment, we show that a Backlund transformation between two equations 
one of which has an auto-Backlund transformation implies an auto-Backlund transforma- 
tion for the second which can thus be found by simple algebraic operations. 

The ordinary methods to derive Backlund transformations of equations are the 
methods obtained by Clairin, Chen and Hirota (Miura 1976, Bullough and Caudrey 
1980). In this comment, we show that a Backlund transformation between two 
equations one of which has an auto-Backlund transformation implies an auto-Racklund 
transformation for the second which can be found by simple algebraic operations. 
The following two equations are considered as examples for that purpose. 

As is well known, there is a Backlund transformation 

q5x = - (2v ) - 'u4 ,  dl = - (4v) - ' (2vuX - u2)c$, ( l a ,  b )  

between the Burgers equation 

U t  + UUX - vuxx = 0 (U ' 0 )  ( 2 )  

which is a typical dissipative wave equation, and the diffusion equation 

Qh = v4xx ( V > O )  (31 

which has an auto-Backlund transformation 

4'  - J&, = 0 ,  J&: -4c = 0 ,  ( 4 4  b )  

where 4 and 4'  are two solutions of equation (3). 

mation 
From (1) and (4) we have proved that equation (2) has the auto-Backlund transfor- 

U, = (2v ) - 'u (u  -u'j, U ~ = ~ - ' U ( U - U ' ) , - - ~ - ' U , ( U  + U ' ) ,  (Sa, b )  

where U and U' are two solutions of equation (2). 
We can use the same method to consider the generalised sine-Gordon equation 

Z,( = 2a(r,zl)"2 (a =constant) (6 )  

clrXt  = a2$ (a = constant) (7) 

and the linear Klein equation 
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which has an auto-Backlund transformation 

(cl: = iLx + k a ( $ ’ - $ ) ,  +; =$r+k-’a((//’-$), ( 8 4  b )  
where sl, and $‘ are two solutions of equation (7) and k is any non-zero parameter. 

Using a Backlund transformation (Dodd and Bullough 1976), 

P a ,  b )  -2  2 2 
z x = a  4 x 7  Z r = $ ,  

between equations (6) and (7), we have obtained an auto-Backlund transformation 
for equation (6), which is defined as 

( l o a )  

( z L ) ~ ” - ( z ~ ) ~ ”  = k ( ( ~ : ) ’ / ~ - ( ~ t ) ~ / ~ ) ,  (106)  
where z and z‘ are two solutions of equation (6) and k is a non-zero arbitrary 
parameter. 

z rt ( zr )1”2-zrr(z;)’’2 = 2 k - ’ ( ~ :  ( z ~ ) ’ / ~ - z ~ ( z : ) ’ / ~ ) ,  
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